Complex Numbers Menu This "Complex Numbers" menu implements a stack to perform operations and functions with complex numbers. To show it, touch the "SCI" menu, and then select the "Complex Numbers" option. This "Complex-Stack" is similar to the normal calculator's history stack, but specially designed for operations with complex numbers. The number are entered in the Complex Stack from the calculator using the "Inputs" buttons. The calculator's stack-X value is used as the real, imaginary, modulus or angle parts depending of the "Format" button state. The Complex Stack, operations and functions are completely independent from the calculator and always behaves in the RPN logic. | Complex Numbers Menu Buttons | | | |---|--|--| | [Format: X+i·Y] Input [X] Input [Y] Output [X] Output [Y] | Rectangular format selected. - Input real part of complex number Zx. - Input imaginary part of complex number Zx. - Enters real part of Zx in calculator's stack. - Enters imaginary part of Zx in calculator's stack. | | | [Format: R∠θ] Input [R] Input [θ] Output [R] Output [θ] | Polar (phasor) format selected. - Input modulus of phasor Zx. - Input angle of phasor Zx. - Enters modulus of Zx in calculator's stack. - Enters angle of Zx in calculator's stack. | | | [Function▶]
[Function▶] | Toggles to show or hide common mathematical function with complex argument. | | | [R≒I] | Swaps the real and imaginary parts of the Zx complex number. | | | [Z*] | Conjugates Zx (change the sign of the imaginary part). | | | [+/-] | Change the sign of Zx (change the sign of the real & imaginary part). | | | [企] | Lift the complex-stack duplicating Zx . | | | [R↓] | Rolls down the Complex-Stack. | | | [X⇔Y] | Swaps the Complex-Stack Zx by Zy . | | | [LstZ] | Enters the last Zx number that was just before a function or operation was applied. | | | [CLZ] | Clears both parts of Zx to 0. | | | Complex Numbers Menu Buttons | | |------------------------------|--| | [^] | Raises Zy to Zx .
=> Stores Zx in LstZ , drop the stack and put in Zx the result of Zy ^ Zx . | | [÷] | Divides Zy by Zx .
=> Store Zx in LstZ , drop the Stack and put in Zx the result of Zy ÷ Zx . | | [x] | Multiplies Zy by Zx .
=> Store Zx in LstZ , drop the Stack and put in Zx the result of Zy x Zx . | | [-] | Subtracts Zx from Zy . => Store Zx in LstZ , drop the Stack and put in Zx the result of Zy - Zx . | | [+] | Adds Zy to Zx . => Store Zx in LstZ , drop the Stack and put in Zx the result of Zy + Zx . | ## **Complex Functions:** Additionally to the arithmetic operations for complex numbers, touching the **[Function▶]** button, brings up a common set of functions that can be applied to the **Zx** complex number. Note: Before applying the function, the number currently in **Zx** is copied to the **LstZ**. ## The Complex functions included in the calculator are: | 1/z | Calculates the reciprocal of Zx | |-----------------------|--| | √z | Calculates the square of Zx | | Z ² | Calculates the square of Zx | | LN | Calculates the Natural Logarithm of Zx | | LOG | Calculates the Common Logarithm of Zx | | EXP | Calculates the Natural Anti-Logarithm of Zx | | ALog | Calculates the Common Anti-Logarithm of Zx | | SIN | Calculates the Sine of Zx | | cos | Calculates the Cosine of Zx | | TAN | Calculates the Tangent of Zx | | SIN-1 | Calculates the Arc-Sine of Zx | | COS-1 | Calculates the Arc-Cosine of Zx | | TAN-1 | Calculates the Arc-Tangent of Zx | | HSin | Calculates the Hyperbolic-Sine of Zx | | HCos | Calculates the Hyperbolic-Cosine of Zx | | HTan | Calculates the Hyperbolic-Tangent of Zx | | HSin-1 | Calculates the Arc-Hyperbolic-Sine of Zx | | HCos ⁻¹ | Calculates the Arc-Hyperbolic-Cosine of Zx | | HTan ⁻¹ | Calculates the Arc-Hyperbolic-Tangent of Zx | **Example 1**: (Arithmetic calculation) Evaluate the expression: $[2i\cdot(-8+6i)^3]/[(4-2i\cdot\sqrt{5})\cdot(2-4i\cdot\sqrt{5})]$ | Keystrokes | Description | |--|--| | [CLZ]
2 Input [Y] | Enter the first complex number "2·i". Zx = 0.00 + 2.00·i | | 8 [+/-] Input [X]
6 Input [Y] | Enter the second complex number "-8 + 6·i". $Zx = -8.00 + 6.00 \cdot i$ | | 3 Input [X] | Enter the exponent number "3 + $0 \cdot i$ ".
$\mathbf{Z}\mathbf{x} = 3.00 + 0.00 \cdot \mathbf{i}$ | | Menu key [^] | Calculate (-8 + 6·i) ³ . Zx = 352.00 + 936.00·i | | Menu key [x] | Calculate 2·i•(-8 + 6·i) ³ . Zx = -1,872.00 + 704.00·i | | 4 Input [X] 5 [Shift] [√x] [x] 2 [=] [+/-] Input [Y] | Calculates $(4 - i \cdot 2 \cdot \sqrt{5})$.
Zx = 4.00 - 4.47 · i | | 2 Input [X] 5 [Shift] [√x] [x] 4 [=] [+/-] Input [Y] | Calculates (2 - i·4·√5).
Zx = 2.00 - 8.94·i | | Menu key [x] | Calculates $(4-i\cdot 2\cdot \sqrt{5}) \cdot (2-i\cdot 4\cdot \sqrt{5})$.
Zx = -32.00 - 44.72·i | | Menu key [÷] | Calculate the final result. Zx = 9.40 - 35.13·i | | Output [X] Output [Y] | Enters Zx real and imaginary parts to the calculator's stack. | Solution: (ALG mode, Format: X + i·Y) **Example 2**: (Arithmetic calculation) Calculate the phasor expression: 2 ∠ 65° + 3 ∠ 40° **Solution: (DEG mode)** | Keystrokes | Description | |---|---| | [Format: R∠Θ] | Set display format to Polar (phasor). | | 2 Input [R] 65 Input [Θ] | Enter the 1 st phasor. Zx = 2.00 ∠ 65.00 | | 3 Input [R]
40 Input [Θ] | Enter the 2 nd phasor.
Zx = 3.00∠40.00 | | Menu key [+] | Adds the complex numbers phasors. Zx = 4.89∠49.96 | | Output [R] Output [Θ] | Enters Zx modulus and angle to the calculator's stack. |