Statistics Functions

The HP-12C calculator provides functions to perform one or two variable statistical calculations. The data samples are entered into the calculator using the $[\Sigma+]$ key, which automatically calculates statistics sums and store them in the Storage Registers from 1 to 6 (called the "Statistics Registers"):

Register	Sum	Description	
1	n	Number of data samples.	
2	Σχ	Summation of x-values.	
3	Σx ²	Summation of squares of x-values.	
4	Σy	Summation of y-values.	
5	Σy²	Summation of squares of y-values.	
6	Σх∙у	Summation of products of x and y-values.	

One Variable Statistics

In <u>one-variable</u> statistical calculations, enter each data point (the "X-value") by keying in the X-value and pressing $[\Sigma+]$. Each time you press $[\Sigma+]$ the calculator does the following:

- Adds 1 to the number in R₁ and displays the number of samples entered.
- The X-value is added to the number in R₂.
- The square of the X-value is added to R₃.

Two Variable Statistics

In <u>two-variable</u> statistical calculations, enter each data pair (the "X and Y-values") by typing the Y-value into the display and pressing **[ENTER]**, then type in the X-value and press **[\Sigma+]**. Each time you press **[\Sigma+]** the calculator does the following:

- Adds 1 to the number in R₁ and displays the number of samples entered.
- The X-value is added to the number in R₂.
- The square of the X-value is added to R₃.
- The Y-value is added to the number in R₄.
- The square of the Y-value is added to R₅.
- The product of the X and Y-values is added to R₆.

The functions keys involved in the statistics calculations are:

Keys	Description
[g] [x]	Calculates the means (arithmetic averages) of the X and Y-values. The mean of the X-values appears in the display; to display the mean of the Y-values, press [X \(\) Y].
[g] [s]	Calculates the standard deviation of the X and Y-values. The standard deviation of the X-values appears in the display. To display the standard deviation of the Y-values, press [X § Y].
[g] [x,r]	Calculates a linear estimation of a new X-value given a Y-value. The new X-value appears in the display. To display the correlation coefficient (R²) of the regression, press [X ≤ Y].
[g] [ỳ,r]	Calculates a linear estimation of a new Y-value given an X-value. The new Y-value appears in the display. To display the correlation coefficient (R ²) of the regression, press [X § Y].
[g] [ẋ,w]	Calculates the weighted mean of the Y-values with the corresponding weights of X-values.
[RCL] [Σ+]	Recalls the content of R_4 ($\sum y$ values) to the stack-Y and R_2 ($\sum x$ values) to the stack-X
[f] clear [Σ]	Clears the statistic registers R ₁ to R ₆ and the stack.

Correcting Accumulated Statistics:

If the data was entered incorrectly, the accumulated statistics can easily be corrected. Simply key in the incorrect data point or data pair again and press [g] [Σ -] to subtract the incorrect data from the statistic registers. Then enter the correct data point or data pair and press [Σ +]. Each time you press [g] [Σ -] the calculator does the following:

- Subtracts 1 from the number in R₁ displaying the new number of samples.
- The x-value is subtracted from the number in R₂.
- The square of the x-value is subtracted from R₃.
- The y-value is subtracted from the number in R₄.
- The square of the y-value is subtracted from R₅.
- The product of the x and y-values is subtracted from R₆.

Example of Statistic Calculations

Enter the following data samples:

Salesman	Hours / Week	Sales / Month
1	32	\$17,000
2	40	\$25,000
3	45	\$26,000
4	40	\$20,000
5	38	\$21,000
6	50	\$28,000
7	35	\$15,000

To enter the data, follow this sequence:

Keystrokes	Display	Comment
[f] clear [REG]	0	Clears statistics registers.
"32" [Enter] "17000" [∑+]	1	First sample entry.
"40" [Enter] "25000" [∑+]	2	Second sample entry.
"45" [Enter] "26000" [∑+]	3	Third sample entry.
"40" [Enter] "20000" [∑+]	4	Fourth sample entry.
"38" [Enter] "21000" [∑+]	5	Fifth sample entry.
"50" [Enter] "28000" [∑+]	6	Sixth sample entry.
"35" [Enter] "15000" [∑+]	7	Seventh sample entry.

Based on the data entered, calculate:

- How many hours the average salesman worked each week?
- How much did the average salesman sell each month?
- What is the standard deviation of sales?
- What is the standard deviation of hours worked?
- What are the estimated sales for a 48-hour workweek? How accurate is that approximation?
- What are the total hours worked per week and the total sales per month?

Keystrokes to find the answers

Keystrokes	Display	Comment
[g][x]	21,714.29	Mean sales per month.
[X≶Y]	40	Mean workweek in hours.
[g] [s]	4,820.59	Standard deviation of sales.
[X≶Y]	6.03	Standard deviation of hours.
"48" [g] [x,r]	28,818.93	Estimated sales for 48 hour work-week.
[X≶Y]	0.9	R2 = 0.9 -> good estimation.
[RCL] [Σ+]	152,000	Total sales (∑x).
[X≶Y]	280	Total hours (∑y).

What is the linear equation that represents the relation between hours per week and sales per month? (Straight line equation of the form y = mx + b)

Keystrokes:

Keystrokes	Display	Comment
"0" [g] [ý,r]	15.55	Calculates the y intercept (the value of y when $x = 0$) which is coefficient "b".
"1" [g] [ý,r]	15.55	Calculates the value of y when $x = 1$.
[X≶Y] [R↓] [X≶Y] [-]	0.001	The difference between the first two values for y is the slope (coefficient "m").

Finally, the equation is: y = 0.001x + 15.55

Example: Weighted Mean

In a trip a car was loaded with 15 gallons of gasoline at \$1.16 per gallon, 7 gallons at \$1.24 per gallon, 10 gallons at \$1.20 per gallon, and 17 gallons at \$1.18 per gallon. What was the average cost per gallon?

Keystrokes to get the answer:

Keystrokes	Display	Comment
[f] clear [REG]	0	Clears statistics registers.
"1.16" [Enter] "15" [Σ+]	1	First sample entry.
"1.24" [Enter] "7" [Σ+]	2	Second sample entry.
"1.2" [Enter] "10" [Σ+]	3	Third sample entry.
"1.18" [Enter] "17" [∑+]	4	Fourth sample entry.
[g] [ẋ,w]	1.19	Calculates the weighted mean => average cost per gallon.