Mathematics Functions

The HP-12C calculator provides several basic mathematical and number alteration functions that are useful for specialized financial calculations as well as for general mathematics calculations:

Keys	Description
[1/X]	Calculates the reciprocal of the number in the display (stack-X).
[y×]	Calculates the number in the stack-Y raised to the power of number in the display (stack-X).
[g] [x²]	Calculates the square of the number in the display (stack-X). Available in the Platinum Model only.
[g] [√x]	Calculates the square root of the number in the display (stack-X).
[g] [LN]	Calculates the natural logarithm (base "e") of the number in the display (stack-X).
[g] [e ^x]	Calculates the exponential of the number in the display (stack-X).
[g] [n!]	Calculates the factorial of the number in the display (stack-X).
[f] [RND]	Rounds the number in the display (stack-X) to the current number of deci- mals.
[g] [INTG]	Calculates the integer part of the number in the display (stack-X).
[g] [FRAC]	Calculates the fractional part of the number in the display (stack-X).

One Number Operations in RPN mode

All the functions that require one number only, are performed directly with the value in the stack-X register (displayed number). In **RPN** mode, the original value is saved in the Last-X register and the content of the stack-X is replaced with the function result.

Example: One Number Function

To perform an operation, follow the "keystrokes" sequence, the result will be in the stack-X and the original number in the Last-X register:

Operation	Keystrokes	Display (stack-X)	Last-X
1 / 0.23	"0.23" [1/X]	4.35	0.23
1.41 ²	"1.41" [g] [x ²]	1.99	1.41
√2	"2" [√x]	1.41	2
LN(27)	"27" [LN]	3.3	27
e ^{3.3}	"3.3" [g] [e ×]	27.11	3.3
5 !	"5" [g] [n!]	120	5

Example: Function [g] [INT] and [g] [FRAC]

Type the number 4.347826087" and get the integer and fractional parts:

Keystrokes	Display	Comment	
Type "4.347826087"	4.347826087	Type the number.	
[g] [INTG]	4	Calculate the integer part.	
[f] [PREFIX]	"4000000000"	Display the 10-Digits mantissa.	
[g] [LSTX]	4.35	Recovers the original number.	
[g] [FRAC]	0.35	Calculate the fractional part	
[f] [PREFIX]	"3478260870"	Display the 10-Digits mantissa.	

Example: Function [f] [RND]

Type the number 4.347826087" and round it to 2 and 6 decimals:

Keystrokes	Display	Comment
Type "4.347826087"	4.347826087	Type the number.
[f] [2]	4.35	Set to show 2 decimals in the display.
[f] [PREFIX]	"4347826087"	Display the 10-Digits mantissa.
[f] [RND]	4.35	Rounds the number to 2 decimals.
[f] [PREFIX]	"4350000000"	Display the 10-Digits mantissa.
[g] [LSTX]	4.35	Recovers the original number.
[f] [6]	4.347826	Set to show 6 decimals in the display.
[f] [RND]	4.347826	Rounds the number to 6 decimals.
[f] [PREFIX]	"4347826000"	Display the 10-Digits mantissa.

One Number Operations in ALG mode

The functions that require one number only, are performed in the same way described above except that the Last-X value remains unchanged. So, in the examples, you can't use [g] [LSTx] to recall the original value of stack-X, instead you should enter the original number again.

Two Number Operations [+], [-], [x], [÷] and [y^x]

All the operations that requires two numbers, are performed considering the number in the stack-Y as the first number, and the number in stack-X as the second number, the stack drops, and the content of the stack-X is replaced with the operation result (in RPN mode, the original value in the stack-X is saved in Last-X register).

Example: Power Operation [y^x]

Calculate the value $2^{1.4}$, $2^{-1.4}$, -2^3 and $2^{1/3}$:

In **RPN mode** follow the next sequence:

Operation	Keystrokes	Result
2 ^{1.4}	"2" [ENTER] "1.4" [y ×]	2.64
2 -1.4	"2" [ENTER] "1.4" [CHS] [y×]	0.38
-2 ³	"2" [CHS] [ENTER] "3" [y×]	-8
2 ^{1/3}	"2" [ENTER] "3" [1/X] [y×]	1.26

In ALG mode follow the next sequence:

Operation	Keystrokes	Result
2 ^{1.4}	"2" [y ×] "1.4" [=]	2.64
2 -1.4	"2" [y ×] "1.4" [CHS] [=]	0.38
-2 ³	"2" [CHS] [y x] "3" [=]	-8
2 ^{1/3}	"2" [y ×] "3" [1/X] [=]	1.26