Rhumb Line Worksheet

Rhumb Line			Clear
P\#	LAT (${ }^{\circ}$)	LON (${ }^{\circ}$)	Ad
1	40.60	73.70	Ins
2	33.90	118.40	Del
$\begin{gathered} \text { From > } \\ \text { P\#1 } \end{gathered}$	$\begin{aligned} & \text { To D } \\ & \text { P\#2 } \end{aligned}$	Rhumb Line Distance	
		2,171.28	NM
True Course		Great Circle Distance	
TCrs	259	2,150.32	NM

Clear	Remove all points leaving the initial one and clears all values to 0.
P\#	Geographical points index column.
LAT	Latitude coordinate of each point (touch to change units).
LON	Longitude coordinate of each point (touch to change units).
Add	Appends a new point (latitude, longitude).
Ins	Insert a new point (latitude, longitude) before the selected point.
Del	Deletes the selected point (latitude, longitude).
From	Select the initial point (latitude, longitude) of the trip segment.
Tol	Select the end point (latitude, longitude) of the trip segment.
Dist	Recalls to the display the distance over the Rhumb Line from the "From" se- lected point to the "To" selected point.
GCD	Recalls to the display the shortest distance (Great Circle distance) from the "From" selected point to the "To" selected point.
TCrs	Recalls to the display the true course required for flight over the Rhumb Line.
NOTE: Tap the LAT or LON heading to select the coordinates units: Decimal degrees (${ }^{\circ}$), Degree-Minute-Second (DMS) or radians (RAD).	

The Rhumb Line function allows you to compute the true course (TCrs), the distance (Dist) of the Rhumb Line and the distance (GCD) in the great circle between multiple points (LAT, LON).

NOTE: Always verify the physical units

To change the units of a variable, tap over the unit symbol and select the right one from the pop-up menu. To change the whole units in the worksheet select "Set Metric Units" or "Set US Units" from the [UNITS>] button in the Navigation Bar.

All the following examples use US units. So please select "Set US Units" from the [UNITS $>$] menu in the Navigation Bar.

Example 1:

What is the true course and distance between JFK (40.6 ${ }^{\circ}, 73.7^{\circ}$) and LAX (33.9${ }^{\circ}$, 118.4°)?

Solution:

Keystrokes	Description
[Clear]	Clears all variables to start a new calculation.
type 40.6 touch P\#1 LAT cell	Set latitude to 40.6° for point \#1.
type 73.7 touch P\#1 LON cell	Set longitude to 73.7° for point \#1.
[Add]	Append point \#2 to the list
type 33.9 touch P\#2 LAT cell	Set latitude to 33.9° for point \#2.
type 118.4 touch P\#2 LON cell	Set longitude to 118.4 ${ }^{\circ}$ for point \#2.
[To>] Point 2	The initial point is already set to "Point 1" so, select the end point from the To menu to "Point 2" and the result is calculated auto- matically: TCrs $=259^{\circ}$ (True Course). Dist = 2,171.28 NM (Rhumb Line Distance). GCD = 2,150.32 NM (Great Circle Distance).

Appendix : Equations Used

The equations that this worksheet calculates are:
Leg Between Point 1 (Lat ${ }_{1}$, Lon $_{1}$) and Point $2\left(\right.$ Lat $_{2}$, Lon $\left._{2}\right)$:

```
\DeltaLonW= MOD( Lon2 - Lon_ , 2п )
\DeltaLonE = MOD( Lon_ - Lon_ , 2п )
\DeltaLon = MIN(\DeltaLonW , \DeltaLonE )
Lat =LN(TAN(Lat 2 / 2 + п/4)/TAN(Lat / / 2 + п/4 ))
q = (Lat ! != Lat 2) ? ( Lat 2 - Lat 
```

TCrs $=2 \pi-\operatorname{MOD}(\operatorname{ATAN} 2(\Delta$ Lat,Δ Lon $), 2 \pi)$
Dist $=\sqrt{ }\left[q^{2} \cdot \Delta\right.$ Lon $\left.^{2}+\left(\text { Lat }_{2}-\text { Lat }_{1}\right)^{2}\right] \cdot R_{E}$
GCD $=$ ACOS[SIN(Lat1) $\cdot \operatorname{SIN}($ Lat2 $)+\operatorname{COS}($ Lat1 $) \cdot \operatorname{COS}($ Lat2 $) \cdot \operatorname{COS}($ Lon2 - Lon1 $)] \cdot R_{E}$

Where:
$R_{E}=6,371(\mathrm{Km})->$ Standard Radius of the Earth

