Airspeed Calculations Worksheet

Airspeed Calculations				Cl	
Pressure Altitude			True Air Speed		
PAlt $=$	8,500		TAS $=$	141.26	KTS
Outside Air Temp.			Mach Number		
OAT $=$	23	${ }^{\circ} \mathrm{F}$	MACH =	0.221	
Calibrated Air Speed			Density Altitude		
CAS =	125.00	kTS	DAlt $=$	8,123	F
Dew Point		Relative Humidity		Total Air Temp.	
Dwp =	0 of	RH =	0 \%	TAT $=28$	

Airspeed Calculations Buttons

Clear

Set all variables to a invalid state keeping the current value. If it is touched again, clears all values to 0 .

PAlt

Pressure Altitude: Stores or validate the PAlt value for the calculation of TAS, MACH or TAT.

OAT

Outside Air Temperature: Store or validate OAT value for the calculation of PAlt, CASGL and TCL. Also to calculate Dew Point or RH\%.

CAS
Calibrated Airspeed: Stores or validate the CAS value for the calculation of TAS or Baro.
TAS True Airspeed: Stores or validate the DAlt value for the calculation of PAlt or OAT.

MACH Mach Number: Stores or validate
Dwp Dew Point: Assuming OAT has a valid value, entering the Dwp calculates RH\% , AGL and TCL.

RH\%
Relative Humidity: Assuming OAT has a valid value, entering RH\% calculates Dwp , AGL and TCL.

DAlt Density Altitude: Stores or validate the DAlt value for the calculation of IAlt or Baro.

TAT Total Air Temperature: Store or validate.

Planned and Actual True Airspeed (TAS) and Mach number can be calculated and are dependent on the temperature input. Planned airspeeds require the use of outside air temperature (OAT), obtainable from the preflight weather briefing or from what you read on a thermometer on the ground. Actual airspeeds require the use of total air temperature (TAT), which is obtained by a probe having velocity with respect to the air (essentially, the thermometer in your aircraft).

This worksheet calculates:

- Planned TAS: With the inputs of planned CAS, OAT and PAlt, calculates the TAS, MACH and TAT (OAT and PAlt values are at the planned flight altitude).
- Actual TAS: With the inputs of PAIt, CAS and TAT, computes OAT, TAS and MACH. The input information is from instruments during an actual flight.
- Required CAS: With the inputs of PAlt, OAT and TAS, computes the CAS, TAT and MACH.
- Planned MACH\#: With the inputs of OAT and MACH, computes the TAS and TAT (OAT value is at the planned altitude and TAT can be used as a crosscheck against the in-flight TAT reading).
- Actual MACH\#: With the inputs of MACH and TAT from instruments during an actual flight, calculates the OAT and TAS.

NOTE: Always verify the physical units

To change the units of a variable, tap over the unit symbol and select the right one from the pop-up menu. To change the whole units in the worksheet select "Set Metric Units" or "Set US Units" from the [UNITS \downarrow] button in the Navigation Bar.

All the following examples use US units. So please select "Set US Units" from the [UNITS $>$] menu in the Navigation Bar.

Example 1: (Planned TAS)

You plan to fly 125 knots CAS, 8,500 feet PAlt, and 23° F OAT. Compute TAS and TAT.

Solution:

Keystrokes	Description
[Clear] [Clear]	Clears all variables to start a new calculation.
type 125 [CAS]	Stores 125 KTS in CAS (the button change to blue).
type 8500 [PAlt]	Stores 8,500 FT in PAlt (the button change to blue).
	Stores $23^{\circ} \mathrm{F}$ in OAT (the button change to blue) and automatically calculates the values of: type 23 [OAT] TAS $=141.26$ KTS (the button change to red). MACH $=0.221$ (the button change to red). TAT $=28^{\circ} \mathrm{F}$ (the button change to red).

Example 2: (Actual TAS)

Compute the TAS at 6,500 feet PAlt, $40^{\circ} \mathrm{F}$ TAT and 120 KTS CAS.
Solution:

Keystrokes	Description
[Clear]	Invalidate all variables.
type 6500 [PAlt]	Stores 6,500 FT in PAlt (the button change to blue).
type 40 [OAT]	Stores $10^{\circ} \mathrm{F}$ in OAT (the button change to blue).
	Stores 120 KTS in CAS (the button change to blue) and automati- cally calculates the values of:
type 120 [CAS]	OAT $=36^{\circ} \mathrm{F}$ (the button change to red). TAS $=132.27$ KTS (the button change to red). MACH $=0.205$ (the button change to red).

Example 3: (Required CAS)

What is the required CAS or MACH to obtain 150 knots TAS with $41^{\circ} \mathrm{F}$ OAT and 6,500 feet PAlt?.
Solution:

Keystrokes	Description
[Clear]	Invalidate all variables.
type 6500 [PAlt]	Stores 6,500 FT in PAlt (the button change to blue).

Keystrokes	Description
type 41 [OAT]	Stores 30.35 IN•HG in Baro (the button change to blue) and auto- matically the resulting PAlt value is calculated: PAlt = 3,500 FT (the button change to red).
	Stores 150 KTS in TAS (the button change to blue) and automati- cally calculates the values of: CAS $=135.39$ KTS (the button change to red). type 150 [TAS] MACH $=0.231$ (the button change to red). TAT $=46^{\circ} \mathrm{F}$ (the button change to red).

Example 4: (Planned MACH)

Compute TAS for 0.72 MACH and $-31^{\circ} \mathrm{F}$ OAT.
Solution:

Keystrokes	Description
[Clear] [Clear]	Clears all variables to start a new calculation.
type 0.72 [MACH]	Stores 0.72 in MACH (the button change to blue).
	Stores $-31^{\circ} \mathrm{F}$ in OAT (the button change to blue) and automatically calculates the values of:
type 31 [+/-]	
[OAT]	TAS $=432.98$ KTS (the button change to red). TAT $=13^{\circ} \mathrm{F}$ (the button change to red).

Example 5: (Actual MACH)

Compute the TAS given 0.82 MACH with $-4^{\circ} \mathrm{F}$ TAT.
Solution:

Keystrokes	Description
[Clear] [Clear]	Clears all variables to start a new calculation.
type 0.82 [MACH]	Stores 0.72 in MACH (the button change to blue).
type $4[+/-]$ [TAT]	Stores $-4{ }^{\circ} \mathrm{F}$ in TAT (the button change to blue) and automatically calculates the values of: TAS $=477.32$ KTS (the button change to red). OAT $=-58^{\circ} \mathrm{F}$ (the button change to red).

Appendix : Equations Used

The equations that this worksheet calculates are:
TAS $=\mathbf{C A S} \cdot \sqrt{ }\left(\rho_{0} / \rho\right)$
MACH $=$ TAS $/\left[\mathrm{s}_{0} \cdot \sqrt{ }\left(\right.\right.$ OAT $\left.\left./ \mathrm{T}_{0}\right)\right]$
$\mathbf{T A T}=\mathbf{O A T} \cdot\left(1+0.2 \cdot \mathbf{M A C H}^{2}\right)$
$\mathbf{R H}=\mathrm{e}^{(17.625 \cdot[\mathrm{Dwp} /(\mathrm{Dwp}+243.04)-\text { OAT / (OAT + 243.04)] })}$
$\mathbf{P}_{\mathbf{T}}=\mathrm{P}_{0} \cdot\left[1-\mathrm{L} \cdot \mathrm{PAlt} / \mathrm{T}_{0}\right]^{\mathrm{C} 1}$
$\mathbf{P v}_{\mathbf{v}}=\mathbf{R H} \cdot 610.78 \cdot 10^{[7.5 \cdot(\text { OAT-273.15)/(OAT-35.85)] }}$
$\rho=\left(\mathbf{P}_{\mathbf{T}}-\mathrm{Pv}_{\mathbf{v}}\right) /(\operatorname{Ra} \cdot \mathbf{O A T})+\mathrm{Pv}_{\mathbf{v}} /(\operatorname{Rv} \cdot \mathbf{O A T})$
DAlt $=\mathrm{T}_{0} / \mathrm{L}-42266.5 \cdot \rho^{\mathrm{C5}}$
Where all variables are in S.I. units and :
$\mathrm{T}_{0}=288.15{ }^{(} \mathrm{K}$)
$\mathrm{L}=0.0065\left({ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\mathrm{P}_{0}=101325.0$ (Pa)
$\rho_{0}=1.2250\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$
So $=340.294(\mathrm{~m} / \mathrm{s})$
C1 $=5.255787741$
C5 $=0.234969$
$\mathrm{Ra}=287.057899\left(\mathrm{~J} / \mathrm{Kg} \cdot{ }^{\circ} \mathrm{K}\right)$
Rv $=461.529825\left(\mathrm{~J} / \mathrm{Kg} \cdot{ }^{\circ} \mathrm{K}\right)$

