Airspeed Calculations Worksheet

Airspeed Calcu	lations Clear
Pressure Altitude PAIt = 8,500 FT	True Air Speed TAS = 141.26 KTS
Outside Air Temp. OAT = 23 °F	Mach Number MACH = 0.221
Calibrated Air Speed CAS = 125.00 KTS	Density Altitude DAIt = 8,123 FT
Dew PointRelative HumidityTotal Air Temp.Dwp = 0 °FRH = 0 %TAT = 28 °F	

Airspeed Calculations Buttons	
Clear	Set all variables to a invalid state keeping the current value. If it is touched again, clears all values to 0.
PAIt	Pressure Altitude: Stores or validate the PAIt value for the calculation of TAS , MACH or TAT .
ΟΑΤ	Outside Air Temperature: Store or validate OAT value for the calculation of PAIt, CASGL and TCL. Also to calculate Dew Point or RH%.
CAS	Calibrated Airspeed: Stores or validate the CAS value for the calculation of TAS or Baro.
TAS	True Airspeed: Stores or validate the DAIt value for the calculation of PAIt or OAT.
MACH	Mach Number: Stores or validate
Dwp	Dew Point: Assuming OAT has a valid value, entering the Dwp calculates RH% , AGL and TCL .
RH%	Relative Humidity: Assuming OAT has a valid value, entering RH% calculates Dwp , AGL and TCL.
DAIt	Density Altitude: Stores or validate the DAIt value for the calculation of IAIt or Baro .
TAT	Total Air Temperature: Store or validate.

Planned and Actual True Airspeed (**TAS**) and Mach number can be calculated and are dependent on the temperature input. Planned airspeeds require the use of outside air temperature (**OAT**), obtainable from the preflight weather briefing or from what you read on a thermometer on the ground. Actual airspeeds require the use of total air temperature (**TAT**), which is obtained by a probe having velocity with respect to the air (essentially, the thermometer in your aircraft).

This worksheet calculates:

- Planned TAS: With the inputs of planned CAS, OAT and PAIt, calculates the TAS, MACH and TAT (OAT and PAIt values are at the planned flight altitude).
- Actual TAS: With the inputs of PAIt, CAS and TAT, computes OAT, TAS and MACH. The input information is from instruments during an actual flight.
- Required CAS: With the inputs of PAIt, OAT and TAS, computes the CAS, TAT and MACH.
- Planned MACH#: With the inputs of OAT and MACH, computes the TAS and TAT (OAT value is at the planned altitude and TAT can be used as a cross-check against the in-flight TAT reading).
- Actual MACH#: With the inputs of MACH and TAT from instruments during an actual flight, calculates the OAT and TAS.

NOTE: Always verify the physical units

To change the units of a variable, tap over the unit symbol and select the right one from the pop-up menu. To change the whole units in the worksheet select "Set Metric Units" or "Set US Units" from the [UNITS▶] button in the Navigation Bar.

All the following examples use US units. So please select "Set US Units" from the **[UNITS▶]** menu in the Navigation Bar.

Example 1: (Planned TAS)

You plan to fly 125 knots CAS, 8,500 feet PAIt, and 23°F OAT. Compute TAS and TAT.

Solution:

Keystrokes	Description
[Clear] [Clear]	Clears all variables to start a new calculation.
type 125 [CAS]	Stores 125 KTS in CAS (the button change to blue).
type 8500 [PAIt]	Stores 8,500 FT in PAIt (the button change to blue).
type 23 [OAT]	Stores 23 °F in OAT (the button change to blue) and automatically calculates the values of: TAS = 141.26 KTS (the button change to red). MACH = 0.221 (the button change to red). TAT = 28 °F (the button change to red).

Example 2: (Actual TAS)

Compute the **TAS** at 6,500 feet **PAIt**, 40°F **TAT** and 120 KTS **CAS**. Solution:

Keystrokes	Description
[Clear]	Invalidate all variables.
type 6500 [PAIt]	Stores 6,500 FT in PAIt (the button change to blue).
type 40 [OAT]	Stores 10°F in OAT (the button change to blue).
type 120 [CAS]	Stores 120 KTS in CAS (the button change to blue) and automati- cally calculates the values of: OAT = 36 °F (the button change to red). TAS = 132.27 KTS (the button change to red). MACH = 0.205 (the button change to red).

Example 3: (Required CAS)

What is the required **CAS** or **MACH** to obtain **150** knots **TAS** with 41°F **OAT** and 6,500 feet **PAIt**?.

Solution:

Keystrokes	Description
[Clear]	Invalidate all variables.
type 6500 [PAIt]	Stores 6,500 FT in PAIt (the button change to blue).

Keystrokes	Description
type 41 [OAT]	Stores 30.35 IN·HG in Baro (the button change to blue) and auto- matically the resulting PAIt value is calculated: PAIt = 3,500 FT (the button change to red).
type 150 [TAS]	Stores 150 KTS in TAS (the button change to blue) and automati- cally calculates the values of: CAS = 135.39 KTS (the button change to red). MACH = 0.231 (the button change to red). TAT = 46 °F (the button change to red).

Example 4: (Planned MACH)

Compute **TAS** for 0.72 **MACH** and -31°F **OAT**.

Solution:

Keystrokes	Description
[Clear] [Clear]	Clears all variables to start a new calculation.
type 0.72 [MACH]	Stores 0.72 in MACH (the button change to blue).
type 31 [+/-] [OAT]	Stores -31 °F in OAT (the button change to blue) and automatically calculates the values of: TAS = 432.98 KTS (the button change to red). TAT = 13 °F (the button change to red).

Example 5: (Actual MACH)

Compute the **TAS** given 0.82 **MACH** with -4°F **TAT**.

Solution:

Keystrokes	Description
[Clear] [Clear]	Clears all variables to start a new calculation.
type 0.82 [MACH]	Stores 0.72 in MACH (the button change to blue).
type 4 [+/-] [TAT]	Stores -4 °F in TAT (the button change to blue) and automatically calculates the values of: TAS = 477.32 KTS (the button change to red). OAT = -58 °F (the button change to red).

Appendix : Equations Used

The equations that this worksheet calculates are:

 $TAS = CAS \cdot \sqrt{(\rho_0 / \rho)}$

 $MACH = TAS / [s_0 \cdot \sqrt{OAT / T_0}]$

 $TAT = OAT \cdot (1 + 0.2 \cdot MACH^2)$

 $\mathbf{RH} = e^{(17.625 \cdot [\mathbf{Dwp} / (\mathbf{Dwp} + 243.04) - \mathbf{OAT} / (\mathbf{OAT} + 243.04)])}$

 $\mathbf{P}_{\mathsf{T}} = \mathbf{P}_{\mathsf{0}} \cdot \left[1 - \mathbf{L} \cdot \mathbf{PAIt} / \mathbf{T}_{\mathsf{0}} \right]^{\mathsf{C1}}$

 $\mathbf{P_{V}} = \mathbf{RH} \cdot 610.78 \cdot 10^{[7.5 \cdot (\mathbf{OAT} - 273.15) / (\mathbf{OAT} - 35.85)]}$

 $\rho = (\mathbf{P}_{T} - \mathbf{P}_{V}) / (\mathbf{Ra} \cdot \mathbf{OAT}) + \mathbf{P}_{V} / (\mathbf{Rv} \cdot \mathbf{OAT})$

DAIt = $T_0 / L - 42266.5 \cdot \rho^{C5}$

Where all variables are in S.I. units and :

- $\begin{array}{lll} \mathbf{T}_{0} &= 288.15 \ (^{\circ}\text{K}) \\ \mathbf{L} &= 0.0065 (^{\circ}\text{C/m}) \\ \mathbf{P}_{0} &= 101325.0 \ (\text{Pa}) \\ \rho_{0} &= 1.2250 \ (\text{kg/m}^{3}) \\ \mathbf{s}_{0} &= 340.294 \ (\text{m/s}) \\ \mathbf{C1} &= 5.255787741 \\ \mathbf{C5} &= 0.234969 \\ \mathbf{Ra} &= 287.057899 \ (\text{J/Kg} \cdot ^{\circ}\text{K}) \end{array}$
- **Rv** = 461.529825 (J/Kg·°K)