Weight Shift \& \%MAC Worksheet

This worksheet has two parts: at the left is the weight shift function and at the \%MAC function.

Clear	Set all variables to a invalid state keeping the current value. If it is touched again, clears all values to 0.			
Weight Shift			\%MAC	
Wt	Total weight of the aircraft.	CG	Center of gravity Arm of the air- craft.	
$\boldsymbol{\Delta C G}$	Change in the center of gravity arm	MAC	Mean aerodynamic chop length.	
$\boldsymbol{\Delta A r m}$	Change in the arm of the weight to shift.	LMAC	Leading edge arm of the MAC.	
$\boldsymbol{\Delta W t}$	Weight to shift to new location.	\%MAC	Percentage of MAC.	

The Weight Shift function computes the amount of weight that must shift to move the CG by a desired amount. Also, can be used to find the change in CG or Arm from adding or removing weight.
The \%MAC function calculates the \%MAC given the CG, the length of the mean aerodynamic chord (MAC), and the leading edge of the mean aerodynamic chord (LMAC).

NOTE: Always verify the physical units

To change the units of a variable, tap over the unit symbol and select the right one from the pop-up menu. To change the whole units in the worksheet select "Set Metric Units" or "Set US Units" from the [UNITS \downarrow] button.

All the following examples use US units. So please select "Set US Units" from the [UNITS $>$] menu in the Navigation Bar.

Example 1:

Find weight of the item that must shift to move the CG in 1 IN if the total weight is 7,500 LBS and the distance weight is shifted is 120 IN .
Solution:

Keystrokes	Description
[Clear]	Clears all variables to start a new calculation and Leg-1 selected.
type 7500 [Wt]	Stores 7,500 LB in the aircraft weight, Wt
type 1 [$\Delta \mathrm{CG}$]	Stores 1 IN of change in the center of gravity, $\Delta \mathrm{CG}$
type 120 [$\Delta \mathrm{Arm}$]	Stores 120 IN change in the arm to shift the weight, $\Delta \mathrm{Arm}$ and au- tomatically show the calculations weight to shift: $\Delta \mathrm{Wt}=62.5 \mathrm{LB}$

Example 2:

Determine the CG in percent of MAC if MAC extends from 860.2 to 1040.9 inches and the center of gravity is at 910.2 inches.
Solution:

Keystrokes	Description
type 860.2 [LMAC]	Stores 860.2 IN in the left edge of MAC, LMAC
$[+/-][+]$ type 1040.9 [MAC]	Stores 180.7 IN in mean aerodynamic chor, MAC
type 910.2 [CG]	Stores 910.2 IN in center of gravity arm, CG and automatically calculates: $\% M A C ~$ \% 27.7 \%

Appendix : Equations Used

The equations that this worksheet calculates are:

Weight Shift:

a) Center of Gravity Change, Δ CG:
$\Delta \mathbf{C G}=\Delta \mathrm{Wt} \cdot \Delta \mathrm{Arm} / \mathrm{Wt}$
b) Item Weight Arm Change, Δ Arm:
$\Delta \mathrm{Arm}=\mathrm{Wt} \cdot \Delta \mathrm{CG} / \Delta \mathrm{Wt}$
c) Item Weight to shift, $\Delta \mathrm{Wt}$:
$\Delta \mathbf{W t}=\mathrm{Wt} \cdot \Delta \mathrm{CG} / \Delta \mathrm{Arm}$

\%Mach:

a) Mean Aerodynamic Chor:

$$
\text { MAC }=(C G-L M A C) \cdot 100 / \% M A C
$$

b) Center of Gravity Arm:
$\mathbf{C G}=$ MAC $\cdot \%$ MAC / $100+$ LMAC
c) Left Edge of MAC Arm:

LMAC = CG - MAC • \%MAC / 100
d) Center of Gravity Percent of MAC:
$\%$ MAC $=100 \cdot($ CG - LMAC $) /$ MAC

